#poultryfarming – Vprint Infotech https://www.vprintinfotech.com Magazine Sat, 22 Mar 2025 14:31:37 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.2 https://www.vprintinfotech.com/wp-content/uploads/2023/08/logo-feb-150x150.jpg #poultryfarming – Vprint Infotech https://www.vprintinfotech.com 32 32 Natural Betaine (Anhydrous): The Safer and Superior Alternative to Synthetic Additives Betaine HCl & Choline chloride in Poultry Nutrition https://www.vprintinfotech.com/natural-betaine-anhydrous-the-safer-and-superior-alternative-to-synthetic-additives-betaine-hcl-choline-chloride-in-poultry-nutrition/ https://www.vprintinfotech.com/natural-betaine-anhydrous-the-safer-and-superior-alternative-to-synthetic-additives-betaine-hcl-choline-chloride-in-poultry-nutrition/#respond Sat, 22 Mar 2025 14:31:29 +0000 https://www.vprintinfotech.com/?p=6942 Natural Betaine (Anhydrous): The Safer and Superior Alternative to Synthetic Additives Betaine HCl & Choline chloride in Poultry Nutrition

Dr Bhaskar Choudhary
Animal Nutritionist
Biochem Zusatzstoffe Handels- und Produktionsgesellschaft mbH

 

Abstract:
In the modern poultry industry, ensuring optimal health and productivity in layers, breeders, and broilers under various stress conditions is vital. Feed additives like choline chloride, synthetic betaine (anhydrous and HCl forms), and natural betaine are used to enhance performance. However, synthetic choline chloride and betaine often contain residues of ethylene oxide and trimethylamine (TMA), which pose significant risks to poultry health, including fatty liver syndrome, reproductive challenges, and respiratory hazards. The chemical synthesis of these additives highlights the adverse effects of residue contamination and explains why natural Betaine (anhydrous )(Hepatron/Beta Pro BL) is the superior choice.

 

1. Chemical Synthesis of Choline Chloride, Betaine, and Betaine Hcl
Choline Chloride Synthesis:
Choline chloride is produced by reacting ethylene oxide with trimethylamine, followed by neutralization with hydrochloric acid:
C2H4O + (CH3)3N + HCl —- (CH3)3N+CH2CH2OH.Cl-

Synthetic Betaine Anhydrous Synthesis:
Betaine is synthesized by methylating glycine with trimethylamine:
NH2CH2COOH + 3(CH3)3N—– (CH3)3N+CH2COO-

Betaine Hydrochloride Synthesis:
Betaine HCl is formed by reacting betaine with hydrochloric acid:
(CH3)3N+CH2COO- + HCl —– (CH3)3N+CH2COOH.Cl-

2. Risks Associated with Ethylene Oxide and Trimethylamine Residues
Ethylene Oxide (EO): permissible limit 0.2mg/g
Source: Ethylene oxide is used as a key reactant in choline chloride synthesis.

Risks and Effects:
Fatty Liver: Ethylene oxide residues exacerbate lipid accumulation in the liver, leading to fatty liver syndrome, impairing metabolism and egg production in layers.
Reproductive Challenges: In breeders, EO residues can induce oxidative damage to ovarian tissues, affecting fertility and hatchability.
Respiratory Hazards: Chronic exposure to ethylene oxide fumes or residues increases oxidative stress in respiratory tissues, leading to reduced lung function and increased susceptibility to respiratory infections.

Trimethylamine (TMA): permissible limit 10 mg/kg
Source: TMA is used as a methyl donor in the production of choline chloride and synthetic betaine.

Risks and Effects:
Fatty Liver: Excess TMA disrupts lipid metabolism by impairing the synthesis of very low-density lipoproteins (VLDL), leading to hepatic fat accumulation.
Reproductive Challenges: In breeders, TMA residues interfere with reproductive hormone balance, reducing fertility and chick quality.
Respiratory Hazards: Volatile TMA emissions irritate the respiratory tract, causing chronic respiratory distress in broilers and layers, especially in poorly ventilated environments.

3. Challenges of Synthetic Additives in Poultry Nutrition
Residue Toxicity: Synthetic choline chloride and betaine often leave traces of ethylene oxide and TMA, causing long-term health risks.
Liver Dysfunction: These residues impair liver detoxification and metabolic efficiency, leading to reduced productivity.
Limited Stress Resilience: Synthetic forms lack the bioactive properties of natural betaine, making them less effective in managing stress.

4. Natural Betaine (anhydrous) (Hepatron/Beta Pro BL): A Safer and More Effective Solution
Residue-Free and Safe: Hepatron/Beta Pro BL, derived from natural sources, is free of ethylene oxide and TMA residues, eliminating the associated risks of liver damage, reproductive issues, and respiratory stress.
Superior Liver Support:
– Enhances lipid metabolism, preventing fatty liver syndrome.
– Boosts detoxification pathways to handle feed-related toxins more effectively.
Enhanced Stress Management:
– Natural osmoregulatory properties stabilize cellular hydration under heat and osmotic stress.
– Promotes better feed conversion and growth performance.

5. Correlation Between Natural Betaine and Poultry Health
Fatty Liver Syndrome Prevention: Natural betaine spares choline and methionine in feed, reducing the metabolic burden on the liver and enhancing lipid transport efficiency.
Reproductive Health Support: Hepatron/BetaPro BL optimizes methylation pathways, improving ovarian function, egg production, and hatchability in breeders and layers.
Respiratory Protection: Unlike TMA-containing additives, Hepatron/Beta Pro BL improves cellular hydration and stress tolerance, protecting the respiratory tract from environmental and metabolic stress.

6. Stress in Poultry: A Multi-Faceted Challenge
Types of Stress in Poultry:
1. Environmental Stress: Heat & cold (Environment) stress in broilers & layer
2. Nutritional Stress: Imbalanced diets and mycotoxin contamination.
3. Physiological Stress: Vaccination, debeaking, and transportation.
4. Production Stress: Egg production in layers and rapid growth demands in broilers.

Role of Hepatron/Beta Pro BL in Feed application for Stress Mitigation:
Layers: Reduces egg drop during heat/Cold stress (Environment physiologica stress/ and improves shell quality.
Breeders: Enhances fertility and hatchability under environmental and nutritional stress.
Broilers: Improves growth performance and livability during transportation and heat stress.
Application of Hepatron/BetaPro BL in Drinking water: 6 hours improved water intake during treatment & outbreak condition it is advisable apart from stress mitigation what mentioned in Feed application for quick support as a clinical Nutrition

7. Why Natural Betaine (Hepatron/Beta Pro BL) is Superior

Conclusion
Residues of ethylene oxide and trimethylamine in synthetic choline chloride and betaine pose significant risks to poultry health, including fatty liver, reproductive challenges, and respiratory hazards. Natural (anhydrous )Betaine (Hepatron/Beta Pro BL) offers a safer, residue-free alternative with superior bioavailability and efficacy. By supporting liver function, improving reproductive outcomes, and protecting respiratory health, Hepatron/Beta Pro BL proves indispensable for sustainable and profitable poultry farming.
References are available on request.

]]>
https://www.vprintinfotech.com/natural-betaine-anhydrous-the-safer-and-superior-alternative-to-synthetic-additives-betaine-hcl-choline-chloride-in-poultry-nutrition/feed/ 0
Biosecurity Measures – The First Line of Defence Against Bird Flu https://www.vprintinfotech.com/biosecurity-measures-the-first-line-of-defence-against-bird-flu/ https://www.vprintinfotech.com/biosecurity-measures-the-first-line-of-defence-against-bird-flu/#respond Sat, 22 Mar 2025 05:46:56 +0000 https://www.vprintinfotech.com/?p=6936

Biosecurity Measures – The First Line of Defence Against Bird Flu

Dr. Sagrika Bhat1, Dr. Sundus Gazal2, Dr. Sabahat Gazal3and Dr. Anvesha Bhan4
1Division of Veterinary Biochemistry, 2,3,4Division of Veterinary Microbiology
and Immunology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu

Microscopic pathogens, including bacteria, viruses, fungi, and parasites, pose significant threats to poultry health, with avian influenza being a major concern due to its high mortality, economic impact, and zoonotic potential. The disease is caused by Influenza A virus belonging to the family Orthomyxoviridae. Influenza A viruses are divided into subtypes based on two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). There are 18 different hemagglutinin subtypes and 11 different neuraminidase subtypes (H1 through H18 and N1 through N11, respectively). The highly pathogenic strains such as H5N1, H7N9, and H9N2 have been reported to cause severe disease. The virus spreads through direct contact with infected birds, contaminated feed, water, and fomites, while wild migratory birds serve as natural reservoirs, enabling global transmission. Highly pathogenic avian influenza can lead to near-total flock mortality, significantly disrupting poultry production and trade. Additionally, zoonotic strains such as H5N1 and H7N9 can cause severe respiratory illness, pneumonia, multi-organ failure, and high fatality rates in humans, necessitating global surveillance by organizations like the World Health Organization (WHO).

Poultry farms constantly face the risk of Avian influenza and other infectious diseases that persist in dust, droppings, and farm waste, making biosecurity a fundamental component of disease prevention. Biosecurity measures serve as the first line of defence, preventing pathogen entry and transmission through stringent hygiene, controlled farm access, and optimized housing conditions. Effective biosecurity minimizes outbreaks of avian influenza, Newcastle disease, duck plague, and bacterial infections such as fowl cholera and mycoplasmosis, which compromise poultry health, reduce productivity, and weaken consumer confidence.

Given the increasing incidence of avian influenza worldwide, including India, strengthening biosecurity is imperative to safeguard poultry health and public safety. Disease prevention strategies must integrate high-quality stock, proper housing, clean feed and water, regular disinfection, and restricted farm access. Additionally, modifying industry practices in poultry production, transport, and marketing is essential to curb disease spread. Veterinary authorities must continuously evaluate and refine biosecurity measures in high-risk areas while considering economic and social impacts. Several biosecurity measures have been implemented or require further revision in Asian countries, including India, to effectively control avian influenza and ensure sustainable poultry production. Above all, biosecurity must be a continuous effort rather than a reactive response to outbreaks.

A well-structured, proactive approach remains critical for preventing disease outbreaks, ensuring industry stability, and minimizing zoonotic risks.

Key Biosecurity Measures in the Poultry Industry
1. Marketing Systems: Live bird markets serve as critical points for avian influenza (AI) transmission due to continuous operation, overnight poultry retention, and the reintroduction of unsold birds to farms. These practices facilitate pathogen circulation. Implementing a mandatory market rest period of 24 hours in a week, accompanied by thorough cleaning and disinfection, is essential to mitigate viral persistence and spread.

2. Species Segregation: Domestic waterfowl and quail act as reservoirs for avian influenza viruses. Their cohabitation, transportation, and marketing alongside other poultry should be restricted to minimize interspecies transmission. Additionally, swine reared in proximity to infected poultry farms are found to be infected with HPAI (Highly Pathogenic Avian Influenza) therefore should undergo systematic veterinary surveillance. In cases of confirmed avian influenza infection, culling of affected herds is recommended to prevent viral reassortment and potential zoonotic spillover.

3. Farming Practices: Extensive poultry rearing systems, particularly in village settings, pose a heightened risk for avian influenza introduction due to their lack of biosecurity controls. Strategic vaccination programs targeting backyard poultry can enhance herd immunity. Commercial farms should adhere to an ‘all-in, all-out’ production model to reduce pathogen exposure and poultry workers must adhere to strict biosecurity protocols, including cleaning, disinfecting, or changing protective clothing, equipment, and footwear before entering and after leaving farms.

4. Transport Biosecurity: Transport cages and egg containers should be constructed from non-porous materials such as plastic or metal over wooden cages to facilitate effective disinfection. To prevent environmental contamination and disease spread, bio-secure transport protocols should be implemented. This includes minimizing faecal contamination during poultry unloading, ensuring transport cages are cleaned and disinfected before returning to farms, and using easily sanitized materials for transporting table eggs, fertile eggs, and day-old chicks.

5. Compartmentalization: In regions where avian influenza is endemic, creating compartmentalized poultry populations with distinct health statuses is essential for disease control and international trade compliance. This requires strict biosecurity measures, including traceability of fertilized eggs, certified hatchery and feed sources, vermin control, and regulated transport. Poultry operators must maintain detailed records of suppliers, egg crate circulation, employee responsibilities, and transport activities to ensure compliance and effective disease containment.

Mitigation of Stress through Managemental Interventions
While biosecurity is crucial for disease prevention, stress reduction is equally important in enhancing poultry resistance to infections, including avian influenza. Environmental factors such as high temperatures, ammonia build-up, overcrowding, feed deprivation, handling, and transportation induce physiological stress, compromising immunity. Strategies such as adjusting feeding schedules, providing cool drinking water, supplementing essential nutrients, and optimizing dietary energy and amino acid levels help mitigate heat stress. Maintaining appropriate temperature, ventilation, and humidity is vital for flock health, especially in regions with high heat and humidity. Since wet litter contributes significantly to ammonia production, proper litter management, ventilation, and dietary adjustments are necessary to reduce ammonia levels and support biosecurity measures.

Nutritional Biosecurity Measures
Poultry immunity depends on proper nutrition, as essential nutrients regulate immune cell activity and function. Balanced diets rich in proteins, vitamins, trace minerals, and energy sources are critical for disease resistance. Probiotics enhance immunocompetence by stimulating antibody production, while prebiotics selectively promote beneficial gut bacteria, improving immune function. Additionally, mycotoxins in poultry feed suppress immune responses, making birds more susceptible to infections. Strict feed quality control and mycotoxin mitigation strategies should be integral to biosecurity programs.

Hygienic Disposal of Poultry Waste
Poultry operations generate waste, including dead birds, broken eggs, manure, litter, and contaminated equipment, which serve as reservoirs for pathogens. Proper disposal methods include burial, incineration, rendering, and composting.
Burial is effective but requires a 90-day period for pathogen deactivation before use as fertilizer. Incineration is reliable but often limited by facility size. Open burning is costly and environmentally unfavourable. Rendering is viable if decontamination is ensured, though private facilities may be reluctant to handle infected material. Composting within farm premises minimizes the risk of disease transmission during transport. Additionally, high-risk practices like using contaminated water and recycling untreated poultry waste should be strictly prohibited.

Wild Bird and Vector Control for Disease Prevention
Wild birds, particularly waterfowl, act as reservoirs for avian influenza and other pathogens, and play an important role in introducing infections to poultry farms. Effective biosecurity includes wild bird-proofing quarantine facilities and preventing their access to contaminated areas. Rodent control is equally essential, as rats and mice serve as mechanical carriers of the pathogens. A structured eradication program should minimize their dispersal from infected sites. Flying insects also contribute to disease transmission; thus, integrated pest management strategies should be implemented to reduce their presence in poultry sheds.
Immunomodulation through Nutritional Supplementation and Genetic Strategies
Regular supplementation of vitamins, minerals, and proteins strengthen poultry immunity and should be a core component of modern biosecurity. Nutrient deficiencies compromise resistance, increasing vulnerability to avian influenza and other diseases. As the influenza virus rapidly mutates and can exist as various subtypes and pathotypes, it questions the efficacy of existing vaccines and antivirals, and hence, genetic interventions offer a promising alternative. Screening poultry populations for disease-resistant genes, particularly in native breeds, and incorporating these traits through selective breeding can enhance flock resilience against infections.

Vaccination Strategies for Avian Influenza
Vaccination integrated with biosecurity measures can act as a critical tool for influenza control. Vaccines should provide adequate protection and minimize virus shedding. Vaccination programs coupled with virological and serological surveillance can be used to effectively detect viral mutations and assess vaccine effectiveness. In past influenza outbreaks in Maharashtra, Gujarat, and Madhya Pradesh, India successfully controlled the disease through culling and biosecurity measures. Establishing vaccine banks and enhancing domestic vaccine production are essential for rapid response to outbreaks. Policymakers must decide on vaccination strategies based on epidemiological data and national disease trends.

Strengthening Quarantine and Flock Profiling
Strict quarantine protocols are crucial in preventing disease introduction through newly acquired birds. Newly introduced poultry should be isolated for at least 21 days, monitored for clinical symptoms, and tested (blood, faecal, and nasal swabs) before integration with existing flocks. Beyond farm-level quarantine, strict regulations should be enforced to control cross-border movement of live poultry and poultry products.

Conclusion:
Effective biosecurity is the cornerstone of bird flu prevention and control, serving as the primary defence against disease outbreaks in poultry. Raising awareness among poultry farmers, industry stakeholders, and policymakers is essential for strengthening biosecurity at all levels. Training programs for grassroots poultry managers should be prioritized to ensure the proper implementation of preventive measures. In addition to immunity-boosting strategies and advancements in disease control, continuous surveillance of avian influenza and other infectious diseases is crucial. A proactive and well-enforced biosecurity framework not only safeguards poultry health and industry stability but also minimizes public health risks associated with zoonotic disease transmission. By integrating stringent biosecurity protocols with modern disease prevention strategies, the poultry sector can achieve long-term sustainability and resilience against emerging threats like avian influenza.

]]>
https://www.vprintinfotech.com/biosecurity-measures-the-first-line-of-defence-against-bird-flu/feed/ 0
Importance of Grading in Poultry Breeder farm Operations https://www.vprintinfotech.com/importance-of-grading-in-poultry-breeder-farm-operations/ https://www.vprintinfotech.com/importance-of-grading-in-poultry-breeder-farm-operations/#respond Sat, 18 Jan 2025 10:49:03 +0000 https://www.vprintinfotech.com/?p=6860 Importance of Grading in Poultry Breeder farm Operations

Grading in poultry breeding is the process sorting birds into categories based on their body weights. Grading is the process of sorting individual birds into categories based on bodyweight (super light, light, average, heavy) so that birds within respective categories can be managed back to standard. Grading is the process of shorting of all individual birds in a flock (both Male & Female separately) into 3 sub-populations based on body weights (physiological state) so that each group can be managed back to the standard to have perfect uniformity in the whole flock at the point of Lay (POL). A uniform flock is easier to manage than a variable one; birds in similar physiological stale will respond more similarly to managemental factors.

Background of Grading
There is always a natural variation in a flock, even at day old. At placement, the chick body weight in a flock should have minimum variation. As chicks grow, the variation in the flock increases further due to difference of response of individual birds to factors like vaccination, disease, differing competitiveness of feed, etc. The increased variation reduces overall flock performance and makes the flock management much more difficult.

Understanding the Principles of Grading
Grading is a systematic process that adheres to well-defined principles. It’s a great way to improve the uniformity of a flock!

With grading, the flock is separated, and groups of smaller and bigger birds are formed to improve the total flock uniformity. The grading principles serve as guidelines to ensure consistency, and fairness while classifying birds. The primary principles of grading are the following:

1. Objectivity: Grading should be based on measurable and observable characteristics, minimizing subjective judgments.
2. Traceability: Detailed records should be maintained to track the grading process and facilitate future analysis.
3. Continuous Improvement: Grading practices should be regularly reviewed and updated to incorporate advancements in breeding management.

Purpose
Grading improves uniformity in a flock by separating birds into groups based on their weight so that they can be managed back to the standard.

Benefits
A uniform flock is easier to manage because birds in similar physiological states respond similarly to management.

When to grade
Grading is usually done when the flock is 7–14 days old, and then again at 4, 8, and 12 weeks of age. It’s recommended to grade as soon as possible so that the birds can recover from growth retardation.

How to grade
To grade, you can:
1. Weigh a minimum of 2% of the flock to calculate the average weight and variation in body weight.
• Measure the variation in body weight using the coefficient of variation (CV%) or uniformity (%).
• Separate the birds into categories based on their weight.
• Manage each group to bring them back to the standard weight.

Grading Procedure
Depending on the uniformity 3 to 4 sub-populations may be made; Heavy, Medium, Light & Super light (if necessary). Some breeder houses have fixed pen or partitions and some houses has adjustable partitions; in both cases at least one pen shall be left empty during chick placement for Grading operation. It is better to have adjustable Partition and divide the whole house in 4 parts for Female & 4 parts for Male; with 2 parts each for medium size group (usually over 65% of total population), One part each for Heavy & Light Weight group for both Male & Female. Arrange Brooding in one part each for Male & female separately. Start grading on 8th day itself and shift them in different pen, keepingthe lighter group at the entry side. With advancing age & body weight, arrange 100% grading at the end of 4, 8 & 12 weeks and give floor space accordingly in the respective pen. In case of fixed pen, calculate the floor space, no of feeder & drinker as per maximum no of birds to place after grading. Similarly, in case of adjustable pen adjust the size as per no of birds to be housed along with sufficient no of feeder & drinkers. If stocking density in a pen is not adjusted with floor space, feeder & drinker space, then grading will cause more problem.

Variation in a flock can be measured by 2 different ways:
1. Coefficient of Variation (CV%) – this measured the variations of body weight within the flock, the flock with lower CV’s is a less variable flock.
2. Uniformity% – this measures the evenness of body weights within a flock, the higher the uniformity the less variable the flock is.

Key Issues during Grading:
• Start Grading of Male & Female simultaneously @ 2nd Week or 29th day.
• A successful Grading should minimize the variability in graded flock than the original flock with the CV% shall be around 8 and Uniformity above 80%.
• Each sub-population should be re-weighted & counted to confirm the Av Body Wt and CV%/ Uniformity so that projected (re-scheduled) target body weights & Feeding rates can be determined.
• Inaccurate bird counting will lead to incorrect quantity of Feed, which invite future problem
• Each sup-population should have own dedicated feeding system. Otherwise, supplementary feeding must allow even distribution of feed & adequate feeding space per bird.
• Ensure the stocking density, feeding & drinking space are consistent as per guidelines after grading; specially for the adjustable size pen.

Flock Management after Grading:
• Following grading, the flock need to be managed to achieve targeted body weight in graded group in uniform & coordinated manner. Post grading management to maintain uniformity within graded pen is more important than the grading itself. The most important issue is the post grading management results in the birds converging to a common target body weight at Transfer to laying house.
• Post Grading Feed Quantity should be adjusted to individual pen and graded birds body weights to bring each sub-population gradually back to the target line.

Challenges for Grading
• Grading is often seen as a herculean task. Add to that the misconception that it involves too much work for a very little return, and there are numerous reasons why farm owners do not want to grade their flock.
• Increased costs due to more labor.
• Stressful for birds to move between the pens.
• Feeder & drinker configurations. Managing feed times.

Take Home Message
• Feed level must be recalculated on a weekly basis calculating for changes in liveability.
• Feed recalculation twice a week gives excellent results specially for Light weight group where higher increase level is required.
• Feed calculation based on individual pen birds Av Body Wt & bird numbers
• Feed level should never be reduced
• Feed level for Light Wt group should remain same first week post grading owing to the fact that reduced competition from heavier birds will give a good amount extra feed to all birds.
• Smaller for Heavy Wt Bird group
• Greater for Lighter Wt Bird group
• Standard for Medium Wt bird group
Never hold feed increment for any group for more than 2 weeks

Post Grading: Continuous Improvement
Flock grading is an ongoing process that requires regular review and refinement. Post-grading activities are essential for continuous improvement and sustained breeding success.

By mastering flock grading and adhering to best practices, poultry breeders can achieve optimal flock management, genetic progress, and long-term profitability in their breeding operations.

With the expansion of the poultry industry, farm owners have looked further in detail about ways to improve the hatching eggs and chick output. With increased research, what we know is that one certain way of increasing the overall performance is by maintaining flock uniformity.

A well-graded flock is bound to be more predictable, easier to manage, and more profitable. Combine this with the extensive features that seasoned poultry management software offers, and farm owners will start managing a flock with much greater production potential.

]]>
https://www.vprintinfotech.com/importance-of-grading-in-poultry-breeder-farm-operations/feed/ 0
Gut Health in Broilers: Phytomolecules as an Effective Solution https://www.vprintinfotech.com/gut-health-in-broilers-phytomolecules-as-an-effective-solution/ https://www.vprintinfotech.com/gut-health-in-broilers-phytomolecules-as-an-effective-solution/#respond Wed, 06 Nov 2024 13:14:00 +0000 https://www.vprintinfotech.com/?p=6712

Introduction
The poultry industry has seen exponential growth over the last few decades, driven by the demand for high-quality protein sources such as chicken. However, the intensification of poultry production has also brought challenges, particularly in managing the health of broilers, which are reared under conditions that can predispose them to stress and diseases. Among these, gut health is a critical area of focus because it directly influences the overall health, performance, and productivity of the birds.

Traditionally, antibiotics have been used extensively to manage gut health issues and prevent diseases. However, the rise of antimicrobial resistance (AMR) and global consumer demand for antibiotic-free poultry has necessitated a shift toward non-antibiotic solutions. Phytomolecules, bioactive compounds derived from plants, have emerged as a promising alternative for maintaining gut health in broilers. This article delves into the significance of gut health in broilers, explores the role of phytomolecules and highlights their effectiveness as a sustainable solution in modern poultry operations.

 

Understanding Gut Health in Broilers
Gut health refers to the optimal functioning of the gastrointestinal (GI) tract, which is essential for nutrient absorption, immune response, and overall well-being of broilers. In poultry, the gut is not only responsible for digestion but also acts as a key barrier against pathogens, playing a critical role in the immune system. (Image 1)


(Image 1) Source: Guillermo Tellez-Isaias et al 2023, Engormix

A healthy gut consists of a balanced microbial population (microbiota), an intact intestinal barrier, and a well-regulated immune response. Any imbalance in these components can lead to gut dysfunction, manifesting as poor nutrient absorption, diarrhoea, increased susceptibility to infections, and reduced growth performance.

 

Common gut health challenges in broilers include:
1. Dysbiosis: An imbalance in the gut microbiota, often caused by stress, poor nutrition, or infections, can disrupt gut function.
2. Enteric diseases: Diseases like necrotic enteritis (caused by Clostridium perfringens) and coccidiosis (caused by Eimeria species) can severely damage the intestinal lining.
3. Leaky gut syndrome: Increased intestinal permeability can allow harmful substances to pass into the bloodstream, triggering inflammation and immune responses.
4. Poor nutrient absorption: Impaired gut function can reduce the efficiency of nutrient absorption, affecting growth rates and feed conversion ratios.

Source: Self Field observations

Maintaining optimal gut health is, therefore, essential to achieving high productivity, reducing mortality, and ensuring efficient feed utilization in broilers.

The Role of Phytomolecules in Gut Health
Phytomolecules are bioactive compounds derived from plants, including essential oils, alkaloids, flavonoids, tannins, and terpenes. These molecules possess a wide range of biological activities, such as antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory properties, making them effective in maintaining and improving gut health.

Over the years, research has demonstrated the potential of phytomolecules to support gut health in poultry. Several studies have shown that these plant-derived compounds can modulate the gut microbiota, strengthen the intestinal barrier, and enhance immune responses, thus promoting better growth and health in broilers.

1. Antimicrobial Properties
One of the primary benefits of phytomolecules is their ability to exert antimicrobial effects. Many essential oils and plant extracts contain compounds like carvacrol, thymol, and eugenol, which have been found to inhibit the growth of pathogenic bacteria such as Escherichia coli, Salmonella, and Clostridium perfringens. These antimicrobial properties help maintain a balanced gut microbiota, reducing the risk of infections and dysbiosis. (Image 2)

A study by Burt (2004) demonstrated that essential oils containing carvacrol and thymol are effective in inhibiting the growth of Salmonella and Campylobacter in broilers. Similarly, Liu et al. (2012) found that phytogenic compounds such as oregano and thyme oils can significantly reduce the colonization of pathogenic bacteria in the poultry gut.

2. Antioxidant Effects
Oxidative stress is a common challenge in modern poultry production, especially under intensive farming conditions. Excessive oxidative stress can damage the intestinal lining, leading to inflammation and compromised gut integrity. Phytomolecules such as flavonoids and phenolic acids have strong antioxidant properties, which help neutralize free radicals and protect the intestinal cells from oxidative damage. (Image 3)

Flavonoids, such as quercetin and catechins, have been shown to enhance the activity of antioxidant enzymes, reduce inflammation, and promote gut integrity. In a study conducted by Rehman et al. (2020), supplementation with flavonoid-rich plant extracts improved the gut health of broilers by reducing oxidative stress and enhancing the intestinal barrier function.


(Image 3) Source: Yammine, Jina et al. Heliyon, Volume 8, Issue 12, e12472

3. Anti-inflammatory Action
Chronic inflammation in the gut can lead to poor nutrient absorption, tissue damage, and increased susceptibility to infections. Phytomolecules possess anti-inflammatory properties that can mitigate gut inflammation and support tissue repair. Compounds such as curcumin (found in turmeric) and gingerols (found in ginger) are well-known for their anti-inflammatory effects. A study by Khaleel et al. (2021) demonstrated that dietary supplementation with curcumin significantly reduced gut inflammation in broilers and improved their overall performance. Similarly, ginger extract has been found to decrease pro-inflammatory cytokines and enhance gut health in poultry.

4. Enhancing the Intestinal Barrier
The intestinal barrier is the first line of defence against harmful pathogens and toxins. Phytomolecules, particularly tannins and essential oils, can strengthen the intestinal lining by promoting the production of tight junction proteins that seal the spaces between intestinal cells. This helps reduce intestinal permeability (leaky gut) and prevents the translocation of harmful substances into the bloodstream. (Image 4)

In a study by Yang et al. (2015), tannin-rich plant extracts were found to enhance the expression of tight junction proteins in the intestinal mucosa of broilers, resulting in improved gut integrity and reduced incidence of leaky gut.

5. Modulating the Gut Microbiota
Phytomolecules have prebiotic effects that promote the growth of beneficial gut bacteria, such as Lactobacillus and Bifidobacterium, while inhibiting pathogenic bacteria. A balanced gut microbiota plays a crucial role in maintaining gut health by enhancing nutrient absorption, stimulating the immune system, and protecting against infections.

Research by Windisch et al. (2008) found that phytogenic feed additives, including essential oils and polyphenols, can modulate the gut microbiota by promoting beneficial bacteria and reducing pathogenic bacterial populations. This microbiota modulation helps maintain gut homeostasis, which is essential for optimal growth and performance in broilers.

Phytomolecules in Commercial Broiler Production
The use of phytomolecules as feed additives in broiler production is gaining popularity as a natural and effective alternative to antibiotics. Various commercial phytogenic products containing essential oils, plant extracts, and other bioactive compounds are now available for use in poultry diets.

Benefits of Phytomolecules Supplementation
1. Improved Growth Performance: Several studies have shown that phytomolecules supplementation can enhance growth rates, feed conversion ratios, and overall performance in broilers. For example, Yang et al. (2015) reported that broilers supplemented with a blend of essential oils and polyphenols exhibited higher weight gain and better feed efficiency.

2. Reduced Mortality and Morbidity: By promoting gut health and enhancing the immune system, phytomolecules help reduce the incidence of enteric diseases and lower mortality rates in broilers. A study by Ciftci et al. (2010) found that broilers fed with a diet containing thyme and rosemary essential oils had a lower incidence of necrotic enteritis and improved survival rates.

3. Enhanced Feed Efficiency: Phytomolecules improve nutrient absorption by maintaining gut integrity and supporting the activity of digestive enzymes. This leads to better feed efficiency and reduced feed costs, which are critical factors in commercial broiler production.

4. Sustainability and Consumer Acceptance: The use of phytogenic feed additives aligns with the growing consumer demand for antibiotic-free poultry products. As these additives are derived from natural sources, they are perceived as safe and environmentally friendly, contributing to the sustainability of poultry production.

Challenges and Considerations
While the benefits of phytomolecules in poultry production are well-documented, there are some challenges associated with their use.
These include:

– Variability in Efficacy: The efficacy of phytomolecules can vary depending on factors such as plant source, extraction method, dosage, and the overall diet composition. Standardization of phytogenic products is essential to ensure consistent results.

– Cost: Phytogenic feed additives can be more expensive than traditional antibiotics. However, the long-term benefits, including improved bird health and performance, can offset the higher initial costs.

– Regulatory Approval: Globally in some regions, the use of certain phytomolecules in animal feed may be subject to regulatory approval. Producers should ensure that the phytogenic products they use comply with local regulations.

Conclusion
Gut health is a cornerstone of successful broiler production, influencing not only the health and welfare of the birds but also their growth performance and profitability. As the poultry industry continues to shift toward antibiotic-free production systems, phytomolecules offer a natural and effective solution for maintaining gut health in broilers.
By leveraging the antimicrobial, antioxidant, anti-inflammatory, and microbiota-modulating properties of phytomolecules, poultry producers can improve gut integrity, reduce the incidence of enteric diseases, and enhance the overall performance of their birds. The multiple mechanisms through which phytomolecules support gut health, such as promoting beneficial microbial populations, protecting the intestinal barrier, and mitigating oxidative stress, make them a valuable tool in the pursuit of sustainable poultry production.

The growing body of research supporting the efficacy of phytomolecules in improving broiler gut health underscores their potential as a reliable alternative to antibiotics. Studies have consistently demonstrated that these plant-derived compounds can improve growth performance, reduce mortality, and enhance feed efficiency, all while aligning with consumer demands for natural, antibiotic-free products.

In conclusion, phytomolecules represent a promising, natural solution for enhancing gut health in broilers, offering benefits that extend beyond disease prevention to improving overall flock performance. As the poultry industry moves toward more sustainable and consumer-friendly practices, phytomolecules will likely play an increasingly important role in maintaining the health and productivity of broilers in antibiotic-free production systems.
The future of broiler production lies in sustainable practices that prioritize animal health and welfare without relying on antibiotics. Phytomolecules offer a natural and scientifically backed solution to the challenges of maintaining gut health in broilers, making them a critical component of the next generation of poultry feed additives.

References:
References are available on request.

]]>
https://www.vprintinfotech.com/gut-health-in-broilers-phytomolecules-as-an-effective-solution/feed/ 0
The Role of Vertically Integrated Poultry Systems in Promoting Economic Stability and Sustainable Protein https://www.vprintinfotech.com/the-role-of-vertically-integrated-poultry-systems-in-promoting-economic-stability-and-sustainable-protein/ https://www.vprintinfotech.com/the-role-of-vertically-integrated-poultry-systems-in-promoting-economic-stability-and-sustainable-protein/#respond Tue, 05 Nov 2024 12:06:09 +0000 https://www.vprintinfotech.com/?p=6680

Dr. Narahari, Project Consultant – Meat and Poultry
Founder, NH ProPOWER Consultancy Services,
Bengaluru, Karnataka, +91 96633 76040, drnarahari@nhpropower.com

Introduction
The poultry industry makes significant contributions to our economy. It was the first livestock sector to industrialize. India is currently the third-largest producer of eggs (122 billion eggs) and the fifth-largest producer of chicken (4.4 MMT) (Gulati and Juneja, 2023). In the early days of the poultry business, the various stages and components, like feed manufacturers, hatcheries, grow-out farms, processing plants, and logistics, were functioning independently in markets while depending on each other to sell their products or services. Eventually, these related businesses within the poultry industry began to integrate and function as a single system. Vertically integrated poultry farming is a comprehensive approach that unifies all stages of poultry production (breeding, hatching, feed production, farming, processing, and distribution) under one umbrella.

Figure 1. Schematic representation showing typical operation of a vertically integrated poultry system+


Figure 1 shows the typical operation of a vertically integrated poultry farm and processing unit. The vertical integration model, which incorporated large industry players and small farmers through a contract farming approach, emerged in the middle of the 20th century. This type of contract approach catalyzed the sudden growth of the poultry industry. Integrating different stages of poultry production through strong and modern processes and technologies promotes sustainability, affordability, and economic growth while ensuring quality throughout the supply chain. Streamlining every stage of the supply chain, fostering innovations and technologies, and reducing reliance on external suppliers are the key components of a successful vertically integrated poultry farming system. This article discusses the significance and potential of vertical farming in providing high-quality animal protein at affordable prices to meet the increasing demand for protein sources without compromising sustainable production practices.

Promoting Ethical Standards
Promoting ethical standards in a vertically integrated poultry system is crucial for humane and eco-friendly practices. Adopting and maintaining ethical standards entails supervising each phase of production, from breeding to processing, to assure compliance with improved welfare standards. Humane treatment covers sufficient space, appropriate feed, and healthcare for chickens. Specifically, in the vertically integrated poultry business, large organizations are instrumental in various levels of interconnected activities. With corporations’ business-oriented approach, the rearing conditions of poultry at breeder farms and commercial farms will be more sophisticated, ensuring humane and environmentally friendly practices. In addition, these corporations adopt ethical standards as promotional tools for selling their processed products. Here, cage rearing of birds shifted to floor-rearing practices, keeping poultry birds in more spacious ground areas rather than in cages. This practice provides the birds ample space to express their behavioral needs, like stretching wings, foraging, dust bathing, and ample time to move around. This shift in rearing space improves the birds’ health. It reduces their stress, increasing the productivity of good-quality meat and eggs  . Maintaining bird density following European Union norms (33 kg broilers/m2) or Bureau of Indian Standards (floor space allocation, 0.3 to 1.0/square feet) reduces the risk of overcrowding and ensures the welfare of birds (Giersberg, Hartung et al. 2016).

Furthermore, ensuring ample feed and water availability at all points in a poultry system is critical for maintaining the birds’ optimal health, growth, and productivity. According to standards set by organizations such as the National Research Council (NRC) and the World Organization for Animal Health (WOAH), poultry feed should be balanced with the necessary nutrients. The diet typically contains 18-20% crude protein for broilers during the starter phase (0-3 weeks) and 16-18% during the grower phase (4-6 weeks).
Additionally, the quantity of feed provided differs according to the age and type of rearing. It is observed that during the initial six weeks of the rearing period, broiler chickens typically consume around 1.8-2.2 kg of feed, while layers consume about 110-120 grams of feed per day once they begin laying (Pal, Prakash et al. 2020). Importantly, feed should be stored properly to ensure that it is free from contaminants and toxins, particularly mycotoxins, which are secondary metabolites produced by fungi, and can be detrimental to poultry health. Additionally, a vertically integrated poultry system ensures residue-free and microbiologically safe meat by adopting stringent prophylactic and therapeutic measures at both breeding centers and farm units. Also, regular biosecurity protocols, such as footbaths, controlled access to facilities, and stringent sanitation practices, are essential to prevent pathogen introduction and spread. Besides, it is crucial to provide nest boxes for natural egg laying in breeder rearing to maximize egg production and ensure the well-being of the birds. Nest boxes provide a regulated setting that promotes hygienic and secure egg laying, enhancing the quality of eggs and their potential to hatch successfully. Nest boxes must be at least 12 x 12 inches per hen and should be placed at a suitable height to prevent floor laying (Graham 2024). These boxes for laying eggs relieve stress, encourage innate instincts, and simplify the process of harvesting eggs. In addition, they enhance egg cleanliness and enable more effective health monitoring, hence increasing productivity and adhering to humane standards. Collectively, adoption of above-mentioned standards/measured ensure the health and productivity of chickens and pay way for the sustainable and ethical farming practices.

Streamlining Resource Allocation
Optimizing resource allocation in a vertically integrated poultry system improves operational efficiency, lowers expenditures, and enhances productivity.
The adoption of this system maximizes resource allocation by optimizing the utilization of feed, water, and energy, hence decreasing wastage. Centralized planning and a coordinated supply chain are integral parts of a vertically integrated poultry business. These allow better forecasting and a seamless flow of materials into and from the system, reducing bottlenecks and delays in delivery. Further, integration ensures efficient utilization of floor space in rearing units, by optimizing designs of poultry houses and layouts, while adhering to animal welfare guidelines. Feed management (nutritious feed in the right quantity at the right time) using advanced automated feeding systems with appropriate designs reduces feed waste and improves the feed conversion ratio (FCR). Furthermore, waste products from one stage of production can be repurposed for another use (byproduct utilization). Generation of biogas and fertilizer from poultry litter and animal feed ingredients (meat and bone meal) from all non-edible poultry offal from slaughter plants can be well utilized to reduce waste and create additional revenue streams. For instance, eggshells can be processed into calcium supplements for animal feed or as soil conditioners (Gul, Shoqer et al. 2024) , dead chicks and birds may be converted into protein meal for animal feed, or biogas can be produced using strict biosecurity protocols. Interesting, innovative practices such as in-ovo sexing can reduce the number of male chicks hatched, and those that are hatched can be used in feed production or other industries (Jia, Li et al. 2023). Appropriate treatment of effluents from poultry operations using advanced wastewater systems, and water recycling are inevitable in vertically integrated poultry firms.

Further, during chicken processing, sludge can be processed into organic manure, providing a valuable agricultural resource, and reducing waste disposal issues. Moreover, transitioning from water-based chilling systems to air-based ones considerably lowers water use. Air chilling preserves meat quality by minimizing the uptake of water. Previous reports suggests that air chilling potentially delay the dominance of spoilage organisms Pseudomonas spp as it pays way for diverse microbiome (Belk, Duarte et al. 2021). Additionally, implementing water-saving technologies and practices such as high-pressure, low-volume cleaning systems reduces the use of water resources in vertically integrated poultry farming. Besides, incorporating water-saving technology and techniques, such as high-pressure, low-volume cleaning systems, decreases the use of water resources during chicken processing. Thus, integrated systems push for energy-efficient technologies and invest heavily in securing those technologies, which reduce overall energy consumption. For example, radiant heaters, which deliver direct heat to birds, and Heat recovery systems that capture and reuse waste heat from ventilation, reducing the unit’s energy needs. Also, rooftop solar panels provide a renewable energy source, decreasing reliance on non-renewable electricity. Also, automated feeding and drinking systems ensure precise feed and water delivery, reducing waste and energy consumption. Next, the utilization of centralized collected data, predictive analyses, and internet technologies facilitates data-driven decision-making, hence enhancing the business intelligence of a vertically integrated business model. The utilization of centralized collected data, predictive analyses, and internet technologies facilitates data-driven decision-making, hence enhancing the business intelligence of a vertically integrated business model. In addition, staff skill upgradation and education play a critical role in sustainable farming and production. Thus, educating staff on proper bird, product handling, and hygiene improves resource efficiency. Additionally, bulk purchasing, shared infrastructure, quality standards, traceability, and sustainability initiatives lower capital and revenue costs. Therefore, the adoption and upgradation of energy efficient technologies, data-driven decision-making, and waste management contribute to more eco-friendly and cost-effective poultry operations.

Delivering production efficiency and nutritional excellence
Vertical integration in poultry farming and processing promotes the production of superior animal protein that is accessible to consumers at reasonable prices. Here, the approach greatly reduces the life cycle of chicken products, reducing the time from breeding to market-ready chicken. This acceleration is essential for satisfying consumer demand, maintaining a steady supply, and preserving product freshness. Basically, it facilitates efficient resource management, shortens the life cycle of poultry, reduces overhead charges, achieves economies of scale, ensures consistent quality control, enables the adoption of new technologies and processes, and streamlines the distribution channels. This approach controls all stages of production, where it reduces bottlenecks and the wastage of resources like feed, water, and energy. Also, its centralized planning, efficient operations, and the procurement of inputs in large quantities result in reduced production costs, enabling the protein to be offered to customers at a more affordable price. For instance, vertical integration ensures that chickens reach market weight more quickly, typically within 35 to 42 days, compared to longer periods in less integrated operations (Wilcox, Sandilands et al. 2024) . Also, FCR can be improved to as low as 1.5 to 1.7 (Gulati and Juneja 2023 . Further, organizations with vertical integration can efficiently process up to 13,000 birds/hour. This efficient processing capability guarantees that chickens are slaughtered and processed promptly upon reaching their optimal weight, decreasing the time it takes them to go from the farm to the table. This type of shorter life cycle allows for more frequent production cycles and faster response to market demand. Moreover, the vertically integrated approach is defined by large-scale operations, which allows it to take advantage of economies of scale, reducing the cost per unit of production. This comprises reductions in expenses related to feed, equipment, labor, and other associated costs. Besides, it eliminates the obstacles of multilevel middlemen and assists in streamlining logistics (Begum 2005, Bamiro and Shittu 2009).

Nutritionally, poultry products are rich in high-quality proteins with fewer calories than red meat products. They contain essential vitamins like A, D, E, K, C, and B and minerals such as iron, calcium, magnesium, zinc, potassium, and Selenium. These nutrients are readily absorbed by the body, enhancing the nutritional value of the poultry products. Proteins in chicken products are easily digestible animal protein compared to other livestock proteins. It contributes to muscle growth and overall health in humans. Vertical integrated companies maintain consistency in their products by overseeing breeding, feeding, processing, and distribution, thus increasing consumer trust and satisfaction. Moreover, precision nutrition by adequate feed formulation based on the specific needs of poultry at different growth stages and environmental conditions enhances feed efficiency, reduces waste, and ensures products are rich with nutrients. Vertically integrated firms effectively oversee their existing distribution networks, allowing direct delivery to a large number of retailers and direct customers. Comprehensive supply chain management minimizes distribution expenses, lowers the price increases linked to middlemen, assures a consistent flow of products, and improves the effectiveness and dependability of the supply chain. Therefore, implementing vertical integration within an existing business offers chicken products of exceptional quality at competitive prices.

Catalyst for local economic development, job opportunities and investment
The poultry industry began evolving in the 1930s and adopted a vertically integrated style of contract farming in the 1950s. Later in the 1980s, horizontal integrations were introduced, resulting in regional monopsonies in the poultry business (Constance, Francisco et al. 2013) . However, by integrating the different stages of production, the integrators reduced costs by coordinating the production capacity of each stage or component of the production system. The chicken industry has grown to a higher magnitude today by combining production stages into large vertically integrated firms that can take advantage of rapidly changing technologies and innovations. Generally, vertical integration involves contract farming or breeding, where large organizations contract local farmers to breed/raise chickens, providing them with chicks, feed, veterinary support, and technical guidance. This system creates a stable income source for farmers, who benefit from reduced market risk and guaranteed prices for their produce. By reducing the need for farmers to invest in costly infrastructure, such as feed mills or processing plants, vertical integration makes poultry farming more accessible and profitable for local communities. In India, 70% of poultry farmers engaged through contract farming are small farmers with a flock size of 3,000-10,000 birds; 20% are medium-scale farmers with 10,000- 50,000 birds, and only 10% are large-scale farmers with 50,000-400,000 birds (Khire and Ryba 2024). Additionally, the presence of vertically integrated poultry companies stimulates local economies through job creation. These companies require a workforce for hatcheries, feed mills, processing plants, and distribution networks, creating employment opportunities beyond the farm level. Investment in local infrastructure, such as roads and utilities, often accompanies these operations, further benefiting the community. This significantly increases the cash flows to rural areas. This provides a stable and profitable source of income within their communities, where individuals can maintain their agricultural heritage while incorporating poultry farming. This dual income stream enhances financial stability for rural families, encourages the retention of agricultural knowledge, and sustains the social fabric of rural areas. The poultry industry is characterized by shorter cash flow cycles, ensuring farmers receive timely payments. This reliable income stream supports the day-to-day financial needs of rural families, enhancing their quality of life and enabling them to invest in education, healthcare, and other essential services. Income predictability also allows for better financial planning and reduces economic uncertainty for rural households. Additionally, jobs in transportation and logistics, further boost the rural economy. Other support services such as laboratories, workshops, warehouses, professional training, and other ancillary services create a diverse range of jobs in rural areas. Thus, vertical integration in poultry farming and processing significantly enhances the economic resilience and prosperity of rural areas.

Production sustainability
The concept of sustainability in a vertically integrated poultry business is regarded as multi-dimensional. The term sustainability encompasses economic, environmental, social, and institutional governance aspects  . The output of sustainable production is maximizing the delivery of safe and nutritious food per unit of input resource without increasing pressure on land  . Implementing energy-efficient technologies and practices at every production stage reduces overall energy consumption. For example, LED lighting, energy-efficient ventilation systems, and high-efficiency heating systems can lower the energy required for poultry housing and processing. Renewable energy sources, such as solar energy, wind energy, biogas, etc., can provide a significant portion of the energy required in the poultry industry. Installing solar panels on farm buildings and processing facilities, installing wind turbines to generate electricity for farm operations (in areas with consistent wind patterns), and utilizing agricultural by-products and waste materials as fuel for boilers and heating systems reduces waste and reliance on conventional fossil fuels. Apart from these, space utilization is optimized by setting up advanced housing systems, including multi-tiered aviaries. These systems enable the housing of a greater number of birds in a single location without compromising animal welfare, thereby reducing the overall land footprint of poultry operations. On the other hand, adoption of nipple drinker system reduces water wastage by preventing spillage and evaporation. Additionally, the transition from immersion to air chilling during refining enhances energy efficiency and reduces water consumption. Additionally, air chilling offsets the risk of cross-contamination and improves the quality of the final product by preserving a more natural flavor and texture. Similarly, vertical integration involves adopting water reclamation systems to decrease water consumption and heat recovery systems that harvest waste heat produced during processing and redeploy it to heat water and power equipment or maintain facility temperatures. Together, these practices in vertically integrated units reflect the organization’s commitment to environmental stewardship while maintaining high productivity and economic sustainability (Figure 2).

Figure 2. Schematic representation of sustainable practices employed in vertically integrated poultry farms and processing units. The figure highlights solar and wind energy use to meet energy needs across poultry farms, breeding units, hatcheries, and processing plants. Litter from poultry farms is converted into bioenergy and byproducts like manure, feather meal, and meat and bone meal, reducing environmental pollution. In processing, sludge is managed through organic composting, biogas production, and animal feed creation. Water management includes using nipple drinker systems and water reclamation, while energy-efficient processing methods like shifting from immersion to air chilling and introducing HVAC systems are employed to conserve energy and water resources.

Conclusion
In conclusion, implementing a vertically integrated poultry business model offers a sustainable, efficient, and cost-effective strategy for producing high-quality animal protein and products according to consumer preferences. This strategy involves centralized control over all phases of poultry production, from breeding and raising birds to processing and packaging the final products. By maintaining oversight at every step, companies can ensure that resources such as energy, water, and feed are used efficiently, minimizing waste throughout the production chain. Moreover, it integrates ethical practices and ecologically sustainable methods into production. Ethical practices include providing humane living conditions for the birds, such as adequate space, proper nutrition, and veterinary care, which collectively enhance animal welfare. Sustainable practices involve reducing the carbon footprint by using renewable energy sources like solar and wind power and recycling waste products into bioenergy or organic fertilizers. By focusing on these ethical and sustainable procedures, the poultry sector improves the overall health and well-being of the animals and enhances the quality of the products. Consumers receive higher-quality poultry products that are produced in an environmentally responsible manner, supporting both animal welfare and the health of the planet.

References are available on request.

]]>
https://www.vprintinfotech.com/the-role-of-vertically-integrated-poultry-systems-in-promoting-economic-stability-and-sustainable-protein/feed/ 0
Price hikes = more cereal byproducts in animal feed. What about mycotoxin risk? https://www.vprintinfotech.com/price-hikes-more-cereal-byproducts-in-animal-feed-what-about-mycotoxin-risk/ https://www.vprintinfotech.com/price-hikes-more-cereal-byproducts-in-animal-feed-what-about-mycotoxin-risk/#respond Mon, 05 Aug 2024 09:33:27 +0000 https://www.vprintinfotech.com/?p=6441

Most grains used in feed are susceptible to mycotoxin contamination, causing severe economic losses all along feed value chains. As skyrocketing raw material prices force producers to include a higher proportion of economical cereal byproducts in the feed, the risks of mycotoxin contamination likely increase. In this article, we review why mycotoxins cause the damage they do – and how effective toxin-mitigating solutions prevent this damage.


Mycotoxin contamination of cereal byproducts requires solutions

Cereal byproducts may become more important feed ingredients as grain prices increase. But also from a sustainability point of view and considering population growth, using cereal byproducts in animal feed makes a lot of sense. Dried distiller’s grains with solubles (DDGS) are a good example of how byproducts from food processing industries can become high-quality animal feed.

Figure 1: Byproducts are a crucial protein source (data from FEFAC Feed & Food 2021 report)
Still, research on what happens to mycotoxins during food processing shows that mycotoxins are concentrated into fractions that are commonly used as animal feed
(cf. Pinotti et al., 2016.) To safeguard animal health and performance when feeding lower-quality cereals, it is essential to monitor mycotoxin risks through regular testing and to use toxin-mitigating solutions.

Problematic effects of mycotoxins on the intestinal epithelium
Most mycotoxins are absorbed in the proximal part of the gastrointestinal tract. This absorption can be high, as in the case of aflatoxins (ca. 90%), but also very limited, as in the case of fumonisins (< 1%); moreover, it depends on the species. Importantly, a significant portion of unabsorbed toxins remains within the lumen of the gastrointestinal tract.

Importantly, studies based on realistic mycotoxin challenges (e.g., Burel et al., 2013) show that the mycotoxin levels necessary to trigger damaging processes are lower than the levels reported as safe by EFSA, the Food Safety Agency of the European Union. The ultimate consequences range from diminished nutrient absorption to inflammatory responses and pathogenic disorders in the animal (Figure 2).

1. Alteration of the intestinal barrier ‘s morphology and functionality
Several studies indicate that mycotoxins such as aflatoxin B1, DON, fumonisin B1, ochratoxin A, and T2, can increase the permeability of the intestinal epithelium of poultry and swine (e.g. Pinton & Oswald, 2014). This is mostly a consequence of the inhibition of protein synthesis.

As a result, there is an increase in the passage of antigens into the bloodstream (e.g., bacteria, viruses, and toxins). This increases the animal’s susceptibility to infectious enteric diseases. Moreover, the damage that mycotoxins cause to the intestinal barrier entails that they are also being absorbed at a higher rate.

2. Impaired immune function in the intestine
The intestine is a very active immune site, where several immuno-regulatory mechanisms simultaneously defend the body from harmful agents. Immune cells are affected by mycotoxins through the initiation of apoptosis, the inhibition or stimulation of cytokines, and the induction of oxidative stress.

For poultry production, one of the most severe enteric problems of bacterial origin is necrotic enteritis, which is caused by Clostridium perfringens toxins. Any agent capable of disrupting the gastrointestinal epithelium – e.g. mycotoxins such as DON, T2, and ochratoxin – promotes the development of necrotic enteritis.

3. Alteration of the intestinal microflora
Recent studies on the effect of various mycotoxins on the intestinal microbiota show that DON and other trichothecenes favor the colonization of coliform bacteria in pigs. DON and ochratoxin A also induce a greater invasion of Salmonella and their translocation to the bloodstream and vital organs in birds and pigs – even at non-cytotoxic concentrations.

It is known that fumonisin B1 may induce changes in the balance of sphingolipids at the cellular level, including for gastrointestinal cells. This facilitates the adhesion of pathogenic bacteria, increases in their populations, and prolongs infections, as has been shown for the case of E. coli. The colonization of the intestine of food-producing animals by pathogenic strains of E. coli and Salmonella also poses a risk for human health.

4. Interaction with bacterial toxins
When mycotoxins induce changes in the intestinal microbiota, this can lead to an increase in the endotoxin concentration in the intestinal lumen. Endotoxins promote the release of several cytokines that induce an enhanced immune response, causing inflammation, thus reducing feed consumption and animal performance, damage to vital organs, sepsis, and death of the animals in some cases.

The synergy between mycotoxins and endotoxins can result in an overstimulation of the immune system. The interaction between endotoxins and estrogenic agents such as zearalenone, for example, generates chronic inflammation and autoimmune disorders because immune cells have estrogen receptors, which are stimulated by the mycotoxin.

Increased mycotoxin risks through byproducts? Invest in mitigation solutions.
To prevent the detrimental consequences of mycotoxins on animal health and performance, proactive solutions are needed that support the intestinal epithelium’s digestive and immune functionality and help maintain a balanced microbiome in the GIT. As the current market conditions will likely engender a long-term shift towards the inclusion of more cereal byproducts in animal diets, this becomes even more important.

Trial data shows that EW Nutrition’s toxin-mitigating solution SOLIS MAX provides effective protection against feedborne mycotoxins. The synergistic combination of ingredients in SOLIS MAX mycotoxins from damaging the animals’ gastrointestinal tract and entering the blood stream:

In-vitro study shows SOLIS MAX’ strong mitigation effects against wide range of mycotoxins
Animal feed is often contaminated with two or more mycotoxins, making it important for an anti-mycotoxin agent to be effective against a wide range of different mycotoxins. A dose response evaluation of SOLIS MAX was conducted a at an independent laboratory in Spain, for inclusion levels of 0.10%, 0.15%, and 0.20% (equivalent to 1 kg, 1.5 kb, and 2 kg per ton of feed). A phosphate buffer solution at pH 7 was prepared to simulate intestinal conditions in which a portion of the mycotoxins may be released from the binder (desorption).

Each mycotoxin was tested separately by adding a challenge to buffer solutions, incubating for one hour at 41°C, to establish the base line (see table). At the same time a solution with the toxin challenge and SOLIS MAX was prepared, incubated, and analyzed for the residual mycotoxin. All analyses were carried out by high performance liquid chromatography (HPLC) with standard detectors.

The results demonstrate that SOLIS MAX is a very effective solution against the most common mycotoxins found in raw materials and animal feed, showing clear dose-response effects.

Mycotoxin risk management for better animal feed
A healthy gastrointestinal tract is crucial to animals’ overall health: it ensures that nutrients are optimally absorbed, it provides effective protection against pathogens through its immune function, and it is key to maintaining a well-balanced microflora. Even at levels considered safe by the European Union, mycotoxins can compromise different intestinal functions, resulting in lower productivity and susceptibility to disease.

The globalized feed trade, which spreads mycotoxins beyond their geographical origin, climate change and raw material market pressures only escalates the problem. On top of rigorous testing, producers should mitigate unavoidable mycotoxin exposures through the use of solutions such as SOLIS MAX – for stronger animal health, welfare, and productivity.

References are available on request.

]]>
https://www.vprintinfotech.com/price-hikes-more-cereal-byproducts-in-animal-feed-what-about-mycotoxin-risk/feed/ 0
Phytogenic Feed Additives Intervention: Mitigating Heat Stress in Poultry Birds https://www.vprintinfotech.com/phytogenic-feed-additives-intervention-mitigating-heat-stress-in-poultry-birds/ https://www.vprintinfotech.com/phytogenic-feed-additives-intervention-mitigating-heat-stress-in-poultry-birds/#respond Tue, 14 May 2024 10:59:06 +0000 https://www.vprintinfotech.com/?p=6192 Phytogenic Feed Additives Intervention: Mitigating Heat Stress in Poultry Birds

Dr.Partha P. Biswas
M.Sc.,Ph.D.,F.Z.S.,F.Z.S.I.
Former Asso. Professor & H.O.D.,
Dept. of Zoology, R.K.Mission V.C.College,
Kolkata ,W.Bengal.
Senior Consultant, Aqua-Vet inputs,
Fin-O-Wing Formulations, Kolkata-700084

The chicken industry is becoming more vulnerable to environmental shifts, particularly high temperatures. Open-sided poultry species are susceptible to heat stress, negatively impacting growth and productivity. Factors determining heat stress include temperature radiation, humidity, metabolic rate, age, and duration. Modern commercial broilers are more sensitive to heat stress, making understanding and controlling environmental conditions crucial for poultry production and health. High temperatures in birds reduce antioxidant capacity, requiring food handling and expensive cooling. Understanding and controlling environmental conditions is crucial for poultry production and health.

Thermoregulatory Device in Chicken
Unlike mammals, birds do not have sweat glands, but they have developed a number of behavioral adaptations to cope with heat, including increased breathing rate, panting and raised wings. Commercial poultry prioritize high production, making broilers more sensitive to environmental stresses, and affecting meat quality and immune problems. Under conditions of heat stress, metabolic heat increases, and the animal succumbs to hyperthermia. In summary, it can be concluded that high ambient temperature outside the thermoneutral region during the production phase has a bad effect on meat production, meat quality and causes serious immune problems in broilers.

Heat Shock Proteins of Poultry Birds During Heat Stress
Heat shock proteins (HSPs) are stress proteins found in all living organisms that are activated by high environmental temperatures to protect cells from stressors such as heat. The 70 kDa heat shock proteins (HSP70) are a family of proteins known for their potential role in thermotolerance and widely regarded as cellular thermometers. Over expression of HSP70 has been observed under oxidative stress, leading to mitochondrial reactive oxygen species scavenging and pulmonary endothelial protection against bacterial toxins. They keep cells in order by synthesizing other proteins, attract immune cells and participate in protein assembly and degradation. Higher HSP expression is associated with better heat tolerance and is produced by all living organisms in high temperature environments.

Effects of Heat Stress in Poultry Birds
Reduced voluntary feed intake which affects the functionality of the entire digestive system High environmental temperatures activate the hypothalamus–pituitary axis, brain-gut axis and elevate plasma corticosterone concentrations, affecting the digestive system’s functionality.


This leads to changes in motility, flux patterns, secretory activity, content viscosity and pH Generation of ROS (reactive oxygen species) and the efficacy of the antioxidant defense system deteriorate. Overproduction of ROS in mitochondria can damage proteins, lipids, and DNA Heat stress can impair the feeding process, nutrient absorption and utilization, although water intake increases rapidly Upregulation of adipokines secretion (leptin and adiponectin) and the expression of their receptors can negatively regulate feed intake and calorie consumption thus resulting in decreased metabolic heat production The decline in trypsin, chymotrypsin and amylase (intestinal secretion) due to reduced feed intake often results in impairment of digestive functionality, nutrient digestibility Hypoperfusion and an increase in blood flow to the skin surface occur as an adaptive response of the circulatory system to stabilize blood pressure and promote heat loss It is known that heat challenge has an immune-suppressive effect.

Use of Dietary Phytochemicals to Reduce Heat Stress
Experimental studies on poultry birds suggest phytochemical ingestion may reduce heat stress effects. These phytochemicals can directly or indirectly influence genes and metabolic pathways, with stress reduction linked to antioxidant qualities.


Fig.3: The chicken’s response to being overheated. Chickens raised in high temperatures produce more reactive oxygen species and show signs of immunological inflammation in addition to consuming less food.

Mitigating Heat Stress Using Epigallocatechin-3-Gallate (EGCG), A Secondary Metabolite in Green Tea

Green tea’s most prevalent catechin, EGCG, is thought to be its most bioactive ingredient and possesses potent antioxidant properties. The primary cause of heat stress-induced oxidative stress in poultry is damage to tissues and cells, which is mostly manifested in an increase in MDA (malondialdehyde) concentration in such tissues and cells. It has been demonstrated that adding the polyphenol EGCG to broilers housed in thermoneutral environments may increase their antioxidant capacity. Acutely heat-stressed broilers may have greater antioxidant capacity and less oxidative damage in their muscles because EGCG may activate the Nrf2 signaling pathway.

Reducing Heat Stress in Broiler Chickens With Additional Ginger (Zingiber Officinale) and Onion (Allium Cepa)


Onion and its derivatives including saponins, aglycones, quercetin, cepaenes, flavonoids, organosulfurs, and phenolic compounds showed various pharmacological properties and therapeutic effects.When broilers are heat stressed, the combination of onion and ginger supplements increases the nutrition of the groups more than no supplementation.

According to research results, growth performance, carcass quality, antioxidant levels and immune system response of broilers are improved when fed 10 g of ginger and and 2.5 g of onion during heat stress. Ginger contains substances with powerful antibacterial and antioxidant properties, including chagaol, ginger diol and ginger diol. Ginger (2%) added to broilers suffering from heat stress significantly improved blood biochemical parameters and growth indicators compared to the control group.

Seeds of Black Cumin (Nigella Sativa) improve Bird’s Ability to Live in Heat-stressed Conditions

Black cumin seeds have been shown to have pharmacological and antibacterial properties and also contain drug-like compounds. The volatile oil (0.4-0.45%) contains saturated fatty acids, which include: nigellone, which is the only component of the carbonyl fraction. oil, thymoquinone (TQ), thymohydroquinone (THQ), dithymoquinone, thymol, carvacrol, α and β-pinene, d-limonene, d-citronellol, carvacrol, t-anethole, 4-terpineol and longifolin etc. Thymoquinone improves hatchability, pos-thatching performance and antioxidant activity of thermally stressed broiler embryos. Black cumin extract has been shown in trials to reduce serum MDA levels and protect against oxidative stress.

Hot Red Pepper (HRP) Reduces Heat Exhaustion in Birds


Ascorbic acid, or vitamin C, is abundant in capsaicin, a terpenoid found in HRP that helps prevent heat exhaustion in birds. Carotenoids, which are rich in vitamins E, C, and provitamin A (beta carotene), are known to have powerful antioxidant qualities that help prevent the damaging effects of free radicals and, in certain situations, oxidative stress, which can lead to cell death in broilers. Furthermore, it has been found that adding capsaicin, an active ingredient in red pepper that is present in grill feed at a dose of 50 mg/kg, can lessen the harmful effects of heat stress.

Moringa (Moringa Oleifera)helps to Survive Birds Under Heat Stress

Moringa leaves contain high levels of total polyphenols (260mg/100g), b-carotene (34mg/100g), kaempferol (34mg/100g), quercetin (100mg/100g), as well as a total antioxidant capacity of 260mg/100g. Kaempferol and quercetin are the flavonoids present in moringa leaves and possess strong antioxidants. It has been found that 0.3% incorporation of M. oleifera leaf meal improves the performance and physiological parameters of broilers and also helped the birds survive under heat stress.

THYME (THYMUS VULGAIS) Protects Chicks Against Heat Stress

The two most important bioactive compounds in this plant are carvacrol and thymol, which may be the primary source of thyme’s pharmacological actions. Thus research has identified linalool, thymol, carvacrol, gamma-terpineol, and geraniol as the primary components of thyme. Dietary thyme essential oil (150–200 mg/kg) is more effective at shielding chicks from the harmful effects of heat stress while also enhancing immunological function and development performance. One material that may be able to improve growth in broilers located in hot climates is thyme oil.

Coriander (Coriandrum Sativum) Seed in Ameliorating the Impact of Thermal Challenges


According to research, broilers under heat stress that are fed 2% coriander seed have higher feed intake, weight gain, reduced panting, and higher levels of corticosterone. The broilers’ poor intestinal absorptive capacity and shape may be connected to the rise in corticosterone levels during stress. Furthermore, according to a different study, adding 2% coriander to the diet helps broiler birds by lessening the effects of heat shock. The supplement, according to the author, benefitted broilers that were experiencing heat stress and enhanced their blood parameters, immunity, and overall performance.

Cinnamon (Cinnamomum Zeylanicum) Powder as Antioxidant in Thermally Challenged Birds

The common herbal plant, cinnamon contains different active phenolic compounds, which include flavones, catechin, isoflavones, flavonoids and other phenolics. The main bioactive constituent of cinnamon is cinnamaldehyde. The phenolic components function as antioxidants and can effectively scavenge ROS. Cinnamon supplements help in homeostasis due to the reduced pH caused by heat stress. It has also been reported that an increase in the activity of CAT, total antioxidant capacity and SOD and a decrease in the MDA when birds were placed in a thermally challenged environment during their finishing phase.

Turmeric (Curcuma Longa) for Heat-stressed Broilers


The yellowish pigments of turmeric, namely demethoxycurcumin, curcumin, and bisdemethoxycurcumin, are commonly referred to as curcumoids. Curcuminoids are an antioxidative compound found in turmeric. Researchers have shown the effects of turmeric powder supplement at 0.3 and 0.6 g/kg when administered to birds under heat stress. The superoxide radicals are neutralized, and there is an increase in the activity of SOD and CAT (ROS-removing enzymes or antioxidant enzymes ) and a decrease in MDA in broilers. The increased level in MDA indicates oxidative damage in liver of heat stressed broilers.

Conclusion
Heat stress can hurt poultry birds by making them grow slower, weakening their immune system, causing intestinal inflammation, and causing other health problems. It can also trigger oxidative process. But using natural substances called phytogenic compounds can help chickens who are raised in hot conditions.But more research is needed to understand the molecular changes made by medicinal herbs and the interactions between their active components, gut microbiota, and gut barriers. By using these approaches, we can improve chicken welfare and make poultry production more sustainable and efficient.

]]>
https://www.vprintinfotech.com/phytogenic-feed-additives-intervention-mitigating-heat-stress-in-poultry-birds/feed/ 0
Give Your Birds a Breathing Chance! https://www.vprintinfotech.com/give-your-birds-a-breathing-chance/ https://www.vprintinfotech.com/give-your-birds-a-breathing-chance/#respond Sun, 11 Feb 2024 11:32:36 +0000 https://www.vprintinfotech.com/?p=5898 Give Your Birds a Breathing Chance!
The bird has evolved an extraordinary respiratory system – one that can maintain a constant supply of oxygen to the muscles during flight and provide enough oxygen to sing at the same time. A bird’s respiratory system takes up about 20% of its internal volume, similar to another animal with a huge oxygen demand—the horse. In contrast, the human respiratory system occupies about 5% of its internal volume. Despite the evolutionary advantages, there can be disadvantages that, if not addressed, can result in decreased health and performance.

One of a Kind: The Unique Avian Respiratory System
The avian respiratory system is structurally and functionally unique among air-breathing vertebrates. Unlike the reciprocating mammalian respiratory system, which terminates in large alveolar air spaces, the avian lung is a unidirectional, flow-through system that terminates in small air capillaries.

The avian respiratory system consists of two lungs where gas exchange occurs and several air sacs that serve as mechanical ventilators. The avian bronchus is a branching, three-tiered system that gives rise to primary and secondary bronchi and tertiary parabronchi. This means that the trachea divides into primary bronchi, each of which passes through the lungs and ends in the abdominal air sacs. Secondary bronchi arise from the primary bronchi in the lungs and supply air to the other air sacs (Figure 1).

The parabronchi form an intricate system of branching and interlacing thin-walled air capillaries surrounded by exchange tissue. The structure of this tissue is such that the blood capillaries are exposed to air on all sides, greatly increasing the surface area available for gas exchange. In contrast, mammalian alveolar blood capillaries are exposed to air on only two sides. This makes the avian gas exchange system highly efficient.

Air sacs make up the largest volume of the avian respiratory system. They serve to facilitate the continuous flow of large volumes of air through the lungs, thereby increasing efficiency. A key difference in the avian respiratory system is that respiration is unidirectional. This means that it takes two complete cycles (two inhalations and two exhalations) to move a given volume of oxygen-rich air through the lung and air sac system. The one direct inhalation and exhalation cycle of mammals may seem simpler, but this system is unable to maintain a constant volume of air.


Figure 1: Anatomy of the bird’s respiratory system.

What does this mean for the bird?
Taking into account the blood-gas barrier, respiratory surface area, lung volume, and pulmonary blood capillary volume, the avian lung allows for a significant increase in efficiency compared to the mammalian lung. This increased efficiency may translate into optimized physiological performance through increased oxygen exchange. However, the unique structure of the avian respiratory system means that care must be taken to maintain health and performance.

There are several factors in poultry management that can affect the health of the bird’s respiratory system. First and foremost is bird management. Zoohygiene, environmental and climatic conditions, ventilation, stocking density, and housing type all play an important role in the “quality” of the available air. In addition, exposure to pathogens plays a critical role.

From the nasal associated lymphoid tissues to the bronchial associated lymphoid tissues, the respiratory tract is the bird’s first line of defense against pathogens. There are several common respiratory pathogens—both bacterial and viral—that challenge birds at different ages (Figure 2).

Several avian viruses can cause, among other clinical signs, airway obstruction, which often leads to decreased performance, morbidity, and ultimately death. In addition, there are numerous common bacteria and non-specific pathogens that directly or indirectly affect a bird’s respiratory system, adding to a complex problem.

What does this mean for the farmer?
Animals with compromised respiratory systems have low blood oxygen levels, leading to discomfort, reduced vitality, and decreased feed intake. Ultimately, this leads to reduced performance and even increased mortality rates. In addition to the economic losses caused by reduced flock performance due to respiratory problems, the above-mentioned diseases also result in additional costs for the farmer that affect the bottom line.

With the goal of avoiding the manifestation of larger complex problems, these additional expenses typically include costs associated with:

  • improved biosecurity and sanitation
  • vaccination programs
  • medical treatments

 

In addition, certain diseases where prevention has been unsuccessful may require the culling of the entire flock, resulting in a significant financial loss to the farmer. In places where compensation for lost flocks is not available, this can be ruinous for farmers. Therefore, preventive measures are of paramount importance.

Signs That All Is Not Right.
Routine inspection of several metrics of the flock can help determine if something is not well with the birds. These data points can include:

  • age
  • vaccination status
  • previous medicinal treatments
  • mortality
  • weight gain
  • laying rate
  • hatchability
  • feed and water intake

Behavioral signs—specifically activity level, attentiveness, perching behavior, huddling, and posture—are also important to take note of and can provide many clues to the health of the flock. When considering the clinical signs that are evident in a flock with respiratory problems, we can categorize these into what we can hear and see.

What we see…
A very common sign is an open beak, indicating that the bird is panting. This may be due to thermal stress (trying to cool down) or trying to clear its airways of possible mucus. The nostrils and sinuses often show signs of swelling and some kind of discharge, and the eyes may show signs of conjunctivitis, or they may be foamy and/or sunken (Figure 3). The comb and wattle may be visibly swollen and discolored. The bird’s posture can tell a lot, especially if the feathers appear to be ruffled, the wings drooping, and the bird is hunched over, moribund.


What we hear…

Attentive ears will normally pick up irregular sounds in a flock, like, for example, sniveling. This sound is usually associated with a mild inflammation typically associated with viral infections, although it can sometimes occur with vaccination reactions. When birds are heard sniffing and grunting, this often indicates more irritated mucous membranes in the upper respiratory tract, often associated with signs of conjunctivitis.

Tracheal rales and honking are clinical signs that we can hear with both viral and bacterial infections, especially with Infectious Bronchitis (IBV), Newcastle Disease (ND), and colibacillosis infections. These signs are a clear indication of excess mucus, mucus in the nasal cavity, and tracheal inflammation. It should be noted, though, that all these clinical signs can also be heard when the house’s climate and environment are not satisfactory. On the other hand, shrieking, gasping, wheezing, and coughing are signs of critical respiratory disease and are typically associated with IBV, ND, Infectious Laryngotracheitis (ILT), Avian Influenza (AI), and colibacillosis. These birds have severely inflamed airways with thick mucus and are in danger of suffocating.

How Can We Deal with Respiratory Problems?
For most avian respiratory diseases, the best prevention methods are vaccination and biosecurity. In fact, vaccination is required by law in some countries for certain diseases such as ND and IBV. Outbreaks of ND are considered serious because of their potential to be velogenic, characterized by rapid spread and up to 100% mortality.

There is currently a global focus on AI and how best to manage this disease. Preventive treatment in the form of vaccination is not yet standard, so biosecurity and good farm hygiene play a fundamental role, as the virus is highly contagious, easily spread and is not only highly pathogenic to many bird species but some strains can also spread to the human population. While good biosecurity and farm management are the basic tools to prevent major respiratory problems, antibiotics remain a necessary tool to manage pathogenic pressures on farms that threaten animal welfare, reduce performance, and promote diseases that are harmful to animals and, ultimately, humans.

Phytogenic Additives Can Help
Despite their usefulness, the use—or overuse—of antibiotics in the industry has come under scrutiny. Alternatives to antibiotics have become increasingly important, and the use of phytogenic feed additives as adjuncts to conventional methods is one area that shows promise. This is reflected in the increased research into the efficacy of phytogenic compounds. There are many scientific studies demonstrating the various beneficial effects on poultry.

The use of phytogenics during respiratory challenges in poultry has beneficial effects. Both in combination with conventional treatments or as a preventive aid, they can help alleviate respiratory signs and facilitate breathing, providing comfort and improved well-being. Some phytogenic additives can help thin mucus, making it easier to clear from the airways. In addition, these phytogenic additives, with their antispasmodic and expectorant properties, facilitate airway clearance and breathing during infection.

Other phytogenic compounds are known for their cooling properties. These compounds activate certain cold receptors on mucus membranes, creating a cooling effect and promoting the feeling of easier air intake. Birds benefit from this effect not only when they are congested, but also in situations where there are large temperature fluctuations.

Phytogenic Dietary Feed Supplements in Action
The supportive effects of a phytogenic dietary supplement, BronchoVest, on respiratory signs were investigated in a controlled trial with Ross308 broilers. Birds (n=384) were assigned to one of six groups (T0-T5). All birds were vaccinated against ND with La Sota strain on day 15 and challenged with an intratracheal pathogenic field isolate of Escherichia coli on day 22. BronchoVest was administered either via the drinking water or as a spray application after vaccination and challenge treatment. All birds were monitored, pen-wise, for clinical signs four times per day for up to seven days post challenge. The following respiratory signs were observed: head swelling, nasal discharge, sneezing, coughing, and dyspnea. Each clinical sign was scored on a scale of 0 (no sign) to 3 (severe).

The groups of challenged birds supplemented with BronchoVest had decreasing respiratory signs over the supplementation period compared to the birds in the T1 positive control group (Figure 4).
At the end of the monitoring period, the supplemented groups were similar to the unchallenged groups, in contrast to the positive control group. These trial results clearly demonstrated the ability of phytogenic supplements such as BronchoVest to help reduce respiratory signs in at-risk birds.

BronchoVest combines the synergistic effects of several active phytogenic ingredients to help birds with respiratory signs. This is particularly helpful in cases of viral respiratory disease where the immune system is challenged and damaged mucous membranes are susceptible to bacterial infection. BronchoVest is a flexible and easy-to-use tool for farmers to improve bird health and performance by addressing respiratory issues.

BronchoVest: Your tool for better breathing birds.

]]>
https://www.vprintinfotech.com/give-your-birds-a-breathing-chance/feed/ 0
Thrust on Sustainable Supply of Feed Ingredients for Maintaining Growth in Poultry Industry https://www.vprintinfotech.com/thrust-on-sustainable-supply-of-feed-ingredients-for-maintaining-growth-in-poultry-industry/ https://www.vprintinfotech.com/thrust-on-sustainable-supply-of-feed-ingredients-for-maintaining-growth-in-poultry-industry/#respond Wed, 10 Jan 2024 08:46:35 +0000 https://www.vprintinfotech.com/?p=5720 Thrust on Sustainable Supply of Feed Ingredients for Maintaining Growth in Poultry Industry

To sustain growth in the poultry sector, the government must ensure supplies of feed ingredients at reasonable prices which should be ensured through liberalizing imports and augmenting production.

Livestock rearing is one of the most important economic activities in the rural areas contributing significantly to the economy. Livestock sector, although half the size of crops, plays a crucial role in driving the agricultural gross value added (GVA) growth. This sector is contributing to the economy in a big way considering the higher rate of growth of the sector in comparison to the agriculture sector.

Presently, the GVA of the livestock sector has recorded an annual growth rate of around 6% at constant prices. The growth of the sector is more than the crop sector growth rate which was 1.65% annually. Its contribution to the Indian agriculture and economy is increasing steadily with a share of 30.47% in agriculture and allied sector GVA and 4.75% in the country’s total GVA.

According to basic animal husbandry statistics, 2023, out of the total meat production of 9.77 million ton (MT) in 2022-23, the share of poultry meat was 4.99 MT, contributing 51% of total output. The growth of poultry meat production has increased by 4.52% over previous year. According to the Food and Agriculture Organisation, India ranks 8th in the world in terms of meat production. The poultry sector in India is valued at more than $28 billion in 2021-22, according to the Confederation of Indian Industry (CII)’s vision document – 2047 for Indian poultry sector released recently. Over the years, the poultry sector in the country has witnessed a remarkable growth, with chicken meat growing at an annual growth rate of 8% in the last 15 years – 2006-2021-22, the report stated.


With rising disposable income and population, the demand for poultry products including chicken meat and eggs has been on rise. The sector has capitalized on this opportunity and expanded its production capability to meet the growing consumer demand. This significant transformation in the poultry sector has been attributed to the commercial poultry industry which accounts for 85% of the total poultry production and 15% is contributed by backyard poultry. The sector has witnessed a shift from the traditional backyard poultry models to a model production technique including integrated farming systems, contracting farming and value chain integration.

As the share of meat and egg eating population has increased by 6% during 2015 – 2021, the national family health survey -V, 2021, the demand for poultry and products is set to increase further. Currently, the per capita consumption of poultry products in the country (94 eggs per annum and chicken meat consumption is 4.2 kg per annum) is very low as compared to the Indian Council for Media Research (ICMR) recommended consumption level of 180 eggs and 10.8/kg poultry meat per person per annum. There is a need to bridge the gap between availability and requirements couples with large scale awareness campaigns.

For enhancing efficiency of the poultry sector, several measures are being undertaken to improve genetics and disease resistance breeds of poultry, disease prevention and surveillance, and supply of affordable feed which constitute 65% to 70% of the cost of production of meat remain a challenge. While stating that the domestic poultry industry is likely to grow at a steady pace of 8%-10% in 2023-24, consulting firm ICRA in March this year had stated that earnings of poultry companies are expected to be volatile owing to fluctuations in the raw material or feed costs, especially maize. ICRA has stated that due to rising worldwide demand for Indian maize as a result of the Russia-Ukraine conflict and increased exports from India, maize prices have grown significantly by 32% on a year-on-year (YoY) basis in 2022-23, resulting in increase in average feed price.

Poultry feed mostly consists of maize, Bajra and broken rice (60-65%), soybean meal (30-35%) and nutrients. The mandi prices of maize because of rising demand for industrial use is ruling much above the minimum support price (MSP) of Rs.1962/quintal announced by the government for 2022-23 and Rs.2090/quintal for 2023-24 kharif season. Stating that there has been increasing diversion of maize towards industrial use and ethanol production, “the current growth level of maize and soybean production in the country will be insufficient to meet the demand of the poultry industry.” As the government plans to promote use of maize for ethanol, the poultry industry can face challenges in getting maize for feed.

Several poultry and livestock industry associations including All India Poultry Breeders Association, The Compound Livestock Feed Manufacturers Association, Poultry Federation of India, Vets in Poultry, are now Pitching for the government to allow imports of GM maize and soybean because of ‘unprecedented increase’ in prices. Regional Poultry Associations have also urged the central government for reduction in import duty on maize and soybean to deal with feed supplies. The industry feared that the prices of maize would spike in the coming months as the diversion of these raw materials for ethanol production is expected to increase as the government has reduced allocation of sugarcane for biofuel production.

In August 2021, the government had relaxed import rules to allow the first shipment of 1.2 MT of genetically modified (GM) soymeal to support the domestic poultry industry after a record spike in feed prices. Poultry industry has requested that the Government should allow both import and cultivation of GM Soybeans and Maize to fulfill the requirement of these two major feed ingredients. The sustainable supplies of feed ingredients in coming years would be crucial for the growth of the poultry industry.

 

]]>
https://www.vprintinfotech.com/thrust-on-sustainable-supply-of-feed-ingredients-for-maintaining-growth-in-poultry-industry/feed/ 0
Challenges in Farms in case of Mixed Infection & Importance of Water pH during Medication https://www.vprintinfotech.com/5589-2/ https://www.vprintinfotech.com/5589-2/#respond Mon, 11 Dec 2023 07:03:47 +0000 https://www.vprintinfotech.com/?p=5589 Challenges in Farms in case of Mixed Infection & Importance of Water pH during Medication


Dr Bhaskar Choudhary
Animal Nutritionist
Biochem Zusatzstoffe Handels- und Produktionsgesellschaft mbH



Sometimes water medication treatments fail seemingly without reason, in these situations doubts arise: we begin to doubt the product, the dosage, the employee who applied the treatment, or even the diagnostic, upon seeing negative results.

In order for a molecule to be water soluble it should be capable of self-ionization; if it doesn’t possess radicals capable of ionization it will precipitate and settle on the bottom if treating a tank. This is what will happen if we try to use a ‘premix’ in the drinking water.

A molecule capable of self-ionization when coming into contact with water would be, for example, a salt, and this is one of the most common presentations of soluble medications. A salt will separate itself into two types of radicals: acid (positive) and basic (negative). Not all molecules used will separate into the same quantity of acid and basic radicals. The characteristic of separating into more or less acid radicals is expressed through the constant pKa. The smaller this constant is, the more acidic the molecular character will be. So, with a pKa of 2,7 (that of phenoximetilpenicillin) the molecule will be considered acid, while with a pKa of 7,6 (that of lincomycin) it will be considered basic. When the pH of the medium in which it is dissolved coincides with its pKa, the molecule will become 50% ionized. In order to reach a good solution, the molecule should be fully ionized. So,

– a molecule that possesses a weak basic character will better ionize in an acidic pH (granitic water)

– a molecule with a weak acid character will better ionize in a basic medium (calcareous waters).

Among the molecules that we can classify as weak acids we can find: ampicillin, fenoximetilpenicilina, amoxicillin, quinolones, etc.

Among the molecules that we can classify as weak bases we can find: macrolides, lincosamides, tiamulin, tetracycline, etc.


In practice, slightly acidifying or neutralizing drinking water can be interesting when trying to improve the solubility of the products used.

Tip: In order to avoid problems with weak base molecules such as tetracycline, acidifying the drinking water would be a recommended measure.
In the case of substances classified as weak acids, such as amoxicillin, ampicillin or phenoximeltilpenicillin, avoiding their use in acidified water is recommended. Actually, strongly acidified waters (pH < 5) could even limit the efficacy of these substances, affecting any possible results obtained from these medications.

Some of the most common antibiotics used as a treatment or Agp

Natural Resources: 1. vitamin A & C -Chilly (respiratory disease)
2. Procyanidin- Tamarind (liver toxicity)
3. alkaloids, flavonoids & Vitamin k – Peepal bark , leaves & stem (Nephrotoxicity, bleeding diarrhoea)
For more details references & support in clinical Nutrition please contact

]]>
https://www.vprintinfotech.com/5589-2/feed/ 0